Abstract
The aim of this paper is to propose a novel building information model (BIM)–building performance model (BPM)–building environmental model (BEM) framework to identify the most energy-efficient and cost-effective strategies for the renovation of existing education buildings to achieve the nearly zero-energy goal while minimizing the environmental impact. A case building, the University of Maryland’s Architecture Building, was used to demonstrate the validity of the framework and a set of building performance indicators—including energy performance, environmental impacts, and occupant satisfaction—were used to evaluate renovation strategies. Additionally, this novel framework further demonstrated the interoperability among different digital tools and platforms. Lastly, following a detailed analysis and measurements, the case study results highlighted a particular energy profile as well as the retrofit needs of education buildings. Eight different renovation packages were analyzed with the top-ranking package indicating an energy saving of 62%, carbon emissions reduction of 84%, and long-term cost savings of 53%, albeit with a relatively high initial cost. The most preferable package ranked second in all categories, with a moderate initial cost.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献