Verification of Fatigue Damage and Prognosis Related to Degradation of Polymer-Ceramic

Author:

Kosiński Piotr,Żach PiotrORCID

Abstract

Statistically, road accidents involving pedestrians occur in the autumn and winter months, when outdoor temperatures reach −30 °C. The research presented in this paper investigates the impact of a pedestrian’s head on laminated windscreen, taking into account the effects of external temperature, heating of the windscreen from the inside, and fatigue of the glass. The automotive laminated windscreen under study is made from two layers of glass and a Polyvinyl Butyral (PVB) resin bonding them together. PVB significantly changes its properties with temperature. The Finite Element Method (FEM) simulations of a pedestrian’s head hitting the windscreen of an Opel Astra II at <−30 °C, +20 °C> were performed. The obtained Head Injury Criterion (HIC) results revealed an almost twofold decrease in safety between +20 °C and −20 °C. The same test was then performed taking into account the heating of the windscreen from the inside and the fatigue of the glass layers. Surprisingly, the highest HIC value of all the cases studied was obtained at −30 °C and heating the windscreen. The nature of safety changes with temperature variation is different for the cases of heating, non-heating, and fatigue of glass layers. Glass fatigue increases pedestrian safety throughout the temperature range analysed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3