Abstract
Chemical systems for thermal energy storage are promising routes to overcome the issue of solar irradiation discontinuity, helping to improve the cost-effectiveness and dispatchability of this technology. The present work is concerned with the simulation of a configuration based on an indirect-packed bed heat exchanger, for which few experimental and modelling data are available about practical applications. Since air shows advantages both as a reactant and heat transfer fluid, the modelling was performed considering a redox oxide based system, and, for this purpose, it was considered a pelletized aluminum/manganese spinel. A symmetrical configuration was selected and the calculation was carried out considering a heat duty of 125 MWth and a storage period of 8 h. Firstly, the heat exchanger was sized considering the mass and energy balances for the discharging step, and, subsequently, air inlet temperature and mass flow were determined for the charging step. The system performances were then modelled as a function of the heat exchanger length and the charging and discharging time, by solving the relative 1D Navier-Stokes equations. Despite limitations in the global heat exchange efficiency, resulting in an oversize of the storage system, the results showed a good storage efficiency of about 0.7.
Funder
Ministero dello Sviluppo Economico
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献