Magnetic and Magnetostrictive Properties of Ni50Mn20Ga27Cu3 Rapidly Quenched Ribbons

Author:

Sofronie MihaelaORCID,Tolea Mugurel,Popescu BogdanORCID,Enculescu MonicaORCID,Tolea FeliciaORCID

Abstract

The influence of the rapid solidification technique and heat treatment on the martensitic transformation, magnetic properties, thermo- and magnetic induced strain and electrical resistivity is investigated for the Cu doped NiMnGa Heusler-based ferromagnetic shape memory ribbons. The martensitic transformation temperatures are unexpectedly low (below 90 K—which can be attributed to the disordered texture as well as to the uncertainty in the elements substituted by the Cu), preceded by a premartensitic transformation (starting at around 190 K). A thermal treatment slightly increases the transformation as well as the Curie temperatures. Additionally, the thermal treatment promotes a higher magnetization value of the austenite phase and a lower one in the martensite. The shift of the martensitic transformation temperatures induced by the applied magnetic field, quantified from thermo-magnetic and thermo-magnetic induced strain measurements, is measured to have a positive value of about 1 K/T, and is then used to calculate the transformation entropy of the ribbons. The magnetostriction measurements suggest a rotational mechanism in low fields for the thermal treated samples and a saturation tendency at higher magnetic fields, except for the temperatures close to the phase transition temperatures (saturation is not reached at 5 T), where a linear volume magnetostriction cannot be ruled out. Resistivity and magnetoresistance properties have also been measured for all the samples.

Funder

Ministerul Cercetării şi Inovării

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3