Corrections of BDS Code Multipath Error in Geostationary Orbit Satellite and Their Application in Precise Data Processing

Author:

Song Weiwei,Wu Qiong,Gong XiaopengORCID,Zheng Fu,Lou Yidong

Abstract

Multipath error is a main error source in Global Navigation Satellite System (GNSS) data processing, which cannot be removed by a differential technique because of the strong relationship with the environment around the station. The multipath effect of the code observables is more complex than that of the carrier-phase observables, especially for BeiDou Navigation Satellite System (BDS) geostationary orbit (GEO) satellites. In this contribution, we deeply analyzed the characteristic and effect on the precise data processing of GEO satellite multipath errors based on a large number of permanent GNSS stations. A linear combination of code and carrier-phase observables was used to analyze the characteristics of repeatability for BDS GEO’s multipath. Then, a correction method was proposed to eliminate the multipath error of the GEO code observables, based on wavelet transform. The experiment data were collected at 83 globally distributed stations, from multi-GNSS experiments and national BDS augmentation systems, from days 32 to 66 in 2017. The results show that the systematic multipath variation component of the GEO code observables can be obtained with wavelet transform, which can significantly contribute to correcting the multipath error of GEO satellites. The average root mean square error (RMSE) of the multipath series is decreased by approximately 19.5%, 20.2%, and 7.5% for B1, B2, and B3, respectively. In addition, some experiments, including ionospheric delay extraction and satellite clock estimation, were conducted in simulated real-time mode in order to validate the effect of the correction methods. For the ionospheric delay estimation, the average RMSE of the slant ionospheric delay is reduced by approximately 15.5%. Moreover, the multipath correction can contribute greatly to shortening the convergence time of the satellite clock estimation of the BDS GEO satellites.

Funder

National Key Research and Development Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3