A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks

Author:

Zito Francesco1ORCID,Cutello Vincenzo1ORCID,Pavone Mario1ORCID

Affiliation:

1. Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy

Abstract

The ability to simulate gene expression and infer gene regulatory networks has vast potential applications in various fields, including medicine, agriculture, and environmental science. In recent years, machine learning approaches to simulate gene expression and infer gene regulatory networks have gained significant attention as a promising area of research. By simulating gene expression, we can gain insights into the complex mechanisms that control gene expression and how they are affected by various environmental factors. This knowledge can be used to develop new treatments for genetic diseases, improve crop yields, and better understand the evolution of species. In this article, we address this issue by focusing on a novel method capable of simulating the gene expression regulation of a group of genes and their mutual interactions. Our framework enables us to simulate the regulation of gene expression in response to alterations or perturbations that can affect the expression of a gene. We use both artificial and real benchmarks to empirically evaluate the effectiveness of our methodology. Furthermore, we compare our method with existing ones to understand its advantages and disadvantages. We also present future ideas for improvement to enhance the effectiveness of our method. Overall, our approach has the potential to greatly improve the field of gene expression simulation and gene regulatory network inference, possibly leading to significant advancements in genetics.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3