Spatiotemporal Heterogeneity of Agricultural Land Eco-Efficiency: A Case Study of 128 Cities in the Yangtze River Basin

Author:

Hu YihangORCID,Liu Xuan,Zhang Zhengyu,Wang Shengpeng,Zhou Haoyu

Abstract

Analysis of spatiotemporal heterogeneity and evolutionary characteristics of agricultural land eco-efficiency is of great significance for achieving a rational use of natural resources and coordinated development of the agricultural economy as well as the ecological environment. In this study, we construct the “ecological space–agricultural production–carbon emission” framework, incorporate carbon emission intensity as an undesired output into the evaluation index system of agricultural land eco-efficiency, calculate the eco-efficiency of agricultural land in 128 cities in the Yangtze River basin from 2009 to 2018 by adopting the super-efficiency SBM model, and discuss the spatial and temporal changes using methodology such as hotspot analysis and kernel density estimation by ArcGIS. The results show the following. The overall trend of agricultural land eco-efficiency in the Yangtze River basin is increasing year by year and still has potential for improvement. However, there are significant discrepancies among cities, with the eco-efficiency of the downstream being much higher than that of the midstream and upstream regions, and demonstrating the pattern of “big dispersion–small agglomeration”. Some cities are still facing pressure to improve the eco-efficiency of agricultural land. Correspondingly, this paper puts forward optimization recommendations: Firstly, the downstream cities should give full play to their geographical advantages, actively introduce advanced production technologies, and reasonably allocate agricultural resources. Secondly, the upstream and midstream regions should formulate reasonable regional strategies in accordance with their natural resource endowments to improve the ecological benefits of agricultural land and narrow the regional disparities. This paper gives targeted policy recommendations at the levels of paying attention to education of farmers, providing incentives for ecological planting, strengthening agricultural infrastructure construction, reasonably controlling the use of agricultural materials, and increasing investment in agricultural pollutant emission management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3