Long-Lasting Boiling-Wells: Geochemical Windows into the Tectonic Activity of the Maodong Fault (China)

Author:

Liu Lin,Jiang Yuehua,Zhou Xun,Li Yun,Zhou Quanping,Su Jingwen,Jia Junyuan,Yang Guoqiang,Jin Yang

Abstract

The Maodong Fault (China) was mainly active during the Late Pleistocene. However, in the past century, numerous destructive earthquakes have occurred along the fault zone, indicating its continuing activity. Therefore, refined monitoring of the tectonic activity along the fault is required. Boiling-Wells located in the Maodong Fault Zone were selected for this purpose. The parameters, including the rare earth elements (REE) and gas components, such as CO2, Rn, and Total Volatile Organic Compounds (TVOC), in the wells were analyzed. By combining field observations with the analytical data, we constrained the relationships between the anomalies of the hydrochemical composition and the gas composition in the Boiling-Wells and the Maodong Fault: (1) CO2 and TVOC in the Boiling-Wells originated from Cenozoic magmatism and associated intrusive rocks. High concentrations of Rn are closely linked to tectonic activities of the Maodong Fault. CO2, TVOC, and Rn are all transported to the Boiling-Wells along the Maodong Fault, with CO2 acting as a carrier gas for Rn. (2) REE in the Boiling-Wells was mainly sourced from CO2 fluids that originated from deep-seated Cenozoic magmas and intrusive rocks. The concentrations of the REE and their distribution patterns were controlled by the input of CO2 fluids and by epigenetic processes. (3) The abnormally high contents of Ca2+, HCO3−, Pb2+, and Al3+ in the Boiling-Wells are attributed to the migration of externally-derived (deep) CO2 fluids through the Maodong Fault. (4) The anomalies of the gaseous (Rn, CO2, and TVOC) and hydrochemical components (Ca2+, HCO3−, Pb2+, Al3+, ∑REE, and REE patterns) in the Boiling-Wells are closely related to the tectonic activity of the Maodong Fault. Therefore, the long-lasting Boiling-Wells provide an excellent geochemical window into the evolution of the Maodong Fault. Our study documents that the contents and variations of specific hydrochemical and gaseous components of Boiling-Wells are well-suited geochemical tracers to identify and characterize the tectonic activity of the Maodong Fault. This method is also applicable for the monitoring of tectonic activities of major faults zones with comparable preconditions worldwide.

Funder

Comprehensive Evaluation of Geological Resources and Environment of the Yangtze River Eco-nomic Belt

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3