Drivers of Ectomycorrhizal Fungal Community Structure Associated with Pinus sylvestris var. mongolica Differ at Regional vs. Local Spatial Scales in Northern China

Author:

Guo Mishan,Gao GuangleiORCID,Ding Guodong,Zhang Ying

Abstract

Pinus sylvestris var. mongolica, a widely planted tree species, is facing long-lasting, unresolved degradation in desertified Northern China. Ectomycorrhizal fungi (EMF) are closely related to the stand status, because they substantially participate in ecological processes of terrestrial forest ecosystems. EMF may be key to solving the introduction recession. Therefore, we performed DNA sequencing of P. sylvestris root samples from plantations and natural forests as control to characterize the EMF from semi-arid and dry sub-humid regions, using ITS Illumina sequencing and conventional soil physicochemical index determination. The results indicated that (1) the dominant EMF genera were Suillus, Rhizopogon, and Wilcoxina in the Hulunbuir, Mu Us, and Horqin Sandy Lands, respectively. Their dominance retained with stand ageing. (2) Plantation EM fungal diversity differs significantly among the three sandy lands and was significantly lower than in natural forest. The diversity varied with stand age, showing distinct trends at the local scale. (3) At the regional scale, the mean annual sunshine times and the soil organic carbon content affect EMF diversity. The community composition and structure were more characterized by temperature and precipitation. At the local scale, besides the soil organic carbon content, the EM fungal community composition and structure were correlated with total nitrogen and phosphorus content (Hulunbuir), the total phosphorus content (Mu Us), and the pH and total soil porosity (Horqin). The EM fungal community composition and structure have the obvious geographical distribution variation; they were strongly correlated with the meteorological elements and soil nutrients at the regional scale. At the local scale, they were jointly driven by stand age and soil properties. This improved information contributes to increasing the understanding of the interaction between EMF and forest ecosystems and guides sustainable forest management of degraded P. sylvestris plantations.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3