Aboveground Biomass Allometric Models for Evergreen Broad-Leaved Forest Damaged by a Serious Ice Storm in Southern China

Author:

Zhao Houben,Li Zhaojia,Zhou Guangyi,Qiu Zhijun,Wu Zhongmin

Abstract

A catastrophic ice storm occurred in the spring of 2008, which severely destroyed nearly 13% of China’s forests; among them, the broad-leaved forest suffered the most extensive damage. In this study, allometric models of the evergreen broad-leaved forests damaged at different recovery stages after the disaster were established to estimate the aboveground biomass of damaged trees. Plant plots were established and surveyed in damaged forests to determine species composition and diameter distribution, and finally a sample scheme was formulated that contained 47 trees from 13 species. The destructive measurements of aboveground biomass of trees selected according to the scheme were conducted in 2008, 2010, 2012 and 2016, respectively. Undamaged trees in the same region were also selected to measure the biomass in 2010. Linear regression of logarithmic transformation of the power function form was performed using Diameter at Breast Height (DBH) as predictor to develop biomass allometric models. The results showed that the ice storm caused tree aboveground biomass loss, which caused different parameters of the tree biomass models at different recovery stages. The models have a high accuracy in predicting trunk and total aboveground biomass, with high determination coefficients (R2, 0.913~0.984, mean 0.957), and have a relatively low accuracy in predicting the biomass of branches and leaves (R2, 0.703~0.892, mean 0.784). The aboveground biomass reduced by 35.0% on average due to the ice storm, and recovered to the same level of undamaged trees in the same diameter 8 years after the disturbance. The branches and leaves recovered very fast, and the biomass of these parts exceeded that of the undamaged trees, reaching the same diameter 2 years after the disaster, indicating an over compensatory growth. The trees with a smaller diameter were mostly composed of middle and late succession species, and recovered faster than other species, indicating that the ice storm may alter the forest structure and accelerate community succession. The biomass allometric models built in this study, combined with forest inventory data, can estimate forest biomass loss and recovery after disturbance, and offer an important sense of the assessment of forest damage and the formulation of forest post-disaster management strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3