Monitoring and Investigating the Change Patterns of Major Growth Parameters of Almond (Badam) Trees under Different Irrigation Conditions

Author:

Yang Huimin12,San Yunlong3,Chen Yifei1,Ma Yan1,Wang Xuenong1,Shoukat Muhammad Rizwan4ORCID,Zheng Yudong4,Hui Xin4

Affiliation:

1. Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

2. Scientific Observation and Experimental Station of Forest Fruit and Cotton Equipment, Ministry of Agriculture and Rural Affairs, Urumqi 830091, China

3. School of Mechanical Engineering, Hubei Engineering University, Xiaogan 432000, China

4. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100193, China

Abstract

Knowledge of the response of growth parameters of almond (Badam) trees to different water supply conditions is important for Badam production. To identify growth parameters that are sensitive to water deficit in almond trees, field experiments were conducted during a median water year to monitor the major growth characteristics of almond trees under different irrigation conditions in Shache County, Xinjiang, China. A field (in-situ) monitoring system was also constructed using various sensors for the continuous and non-destructive monitoring of the growth parameters, such as soil water in the root zone, canopy temperature depression, trunk diameter, and fruit diameter of almond trees. The results confirmed the reliability of the monitoring system. Both canopy temperature depression and the diameter shrinkage of the trunk and fruit were significantly negatively correlated (r values ranging from −0.996 to −0.823) with the irrigation water quantity. This correlation was observed from the young fruit stage to the maturation stage of almond trees, under irrigation conditions representing 50–100% of crop evapotranspiration (ETc). These parameters were sensitive (|r| ≥ 0.778) to the water deficit status of almond trees from 14:00 to 18:00 in sunny weather. These results can provide both technical and theoretical support for real-time non-destructive assessment of the water deficit status of almond trees.

Funder

Academy of Agricultural Sciences Youth Science and Technology Backbone Innovation Ability Training Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3