Comparison of Wind Tunnel Test Data for Low-Rise Buildings with Main Wind Force Resisting System Design Procedures

Author:

Hoq S. M. AshfaqulORCID,Judd Johnn P.ORCID

Abstract

The adequacy of the directional and envelope procedures for the design of the main wind force resisting system is not well understood. The purpose of this study is to evaluate the directional and envelope procedures based on wind tunnel test data for a set of low-rise enclosed buildings with gable-shaped roofs in open terrain (Exposure C). The base shear force and the conditional reliability index are used to determine the adequacy of the procedures. The base shear was compared to the design base shear in each direction based on the horizontal component of the wind load on the wall and roof. The reliability index, β conditional on the occurrence of the design wind speed was computed for a range of system capacities. The main findings are (1) the directional procedure produced a larger design base shear compared to the envelope procedure, primarily due to the difference in external pressure coefficients, (2) the directional procedure provided a higher β, and (3) the envelope procedure provided a β that did not meet the standard target β equal to 3.0 for the main wind force resisting systems with low variability in capacity, but neither procedure met the standard target β for the main wind force resisting systems with high variability in capacity.

Funder

IBHS

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference36 articles.

1. Minimum Design Loads and Associated Criteria for Buildings and Other Structures,2017

2. Metal Building Systems Manual,2018

3. Wind Loads: Guide to the Wind Load Provisions of ASCE 7-10;Mehta,2013

4. A review of wood-frame low-rise building performance study under hurricane winds

5. Seismic Design Manual,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3