Affiliation:
1. Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland
2. College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
Abstract
Hybrid ground source heat pump systems (GSHP) offer energy flexibility in operation. For hybrid GSHP systems coupled with district heating, limited studies investigated control strategies for reducing system energy costs from the perspective of building owners. This study proposed a cost-effective control strategy for a hybrid GSHP system integrated with district heating, investigating how power limits of district heating/GSHP, COP value for control (COPctrl), and control time horizon impact the system annual energy cost, CO2 emissions, and long-term borehole heat exchanger system performance. The simulations were performed using the dynamic building simulation tool IDA ICE 4.8. The results indicate that to realize both the energy cost savings and the long-term operation safety, it is essential to limit the heating power of district heating/GSHP and select an appropriate COPctrl. The control time horizon insignificantly affected the annual energy cost and long-term borehole heat exchanger system performance. The recommended COPctrl was 3.6, which is near the GSHP seasonal performance factor. Eventually, the cost-effective control reduced the system’s annual energy cost by 2.2% compared to the GSHP-prioritized control. However, the proposed control increased the CO2 emissions of the hybrid GSHP system due to the higher CO2 emissions from district heating.
Funder
China Scholarship Council
Business Finland
Aalto University Campus & Real Estate
Reference34 articles.
1. (2024, January 11). Tracking Buildings. Available online: https://www.iea.org/energy-system/buildings.
2. United Nations Environment Programme (2022). 2022 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector, United Nations Environment Programme.
3. Wang, P., Wang, Y., Gao, W., Xu, T., Wei, X., Shi, C., Qi, Z., and Bai, L. (2023). Uncovering the Efficiency and Performance of Ground-Source Heat Pumps in Cold Regions: A Case Study of a Public Building in Northern China. Buildings, 13.
4. Menegazzo, D., Lombardo, G., Bobbo, S., De Carli, M., and Fedele, L. (2022). State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review. Energies, 15.
5. Technologies and environmental impacts of ground heat exchangers in Finland;Majuri;Geothermics,2018