A Low-Carbon Composite Cementitious Material Manufactured by a Combined Process of Red Mud

Author:

Zhao Zhenhua1,Wu Fufei1ORCID,Dong Shuangkuai2,Zhang Qiuyue1,Huang Chuanteng3,Chen Liangliang45

Affiliation:

1. School of Materlals and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China

2. Academic Affairs Office, Guizhou Normal University, Guiyang 550025, China

3. Academic Affairs Office, Zunyi Normal University, Zunyi 563006, China

4. School of Civil Engineering, Huzhou Vocational and Technical College, Huzhou 313099, China

5. Huzhou Key Laboratory of Green Building Technology, Huzhou 313099, China

Abstract

In present study, the effects of varying dosages of combined red mud on the microstructure and hydration process of low-carbon composite cementitious material. The findings indicated a gradual decrease in the reactivity of RM, following a linear trend. The non-evaporable water content of the composite binder exhibited an initial increase followed by a subsequent decrease, with the optimal content identified at 10%, for RM content ranging from 10% to 90%, non-evaporable water decreases linearly. Optimal bending strength and compressive strength were achieved in the mortar when incorporating 10% of RM, reaching 8.56 MPa and 51.2 MPa at 28 days, respectively. The porosity was at its lowest when the RM content was added at 10%, but further increasing RM dosage was reversed. The pore size distribution aligned with the experimental findings on porosity. X-ray diffraction (XRD) analysis revealed the involvement of RM in the secondary hydration reaction, thereby enhancing the mechanical properties of low-carbon composite cementitious material. The optimal content of RM is suggested to be 10%, with a maximum recommended limit of 30%. The analysis has shown that red mud particles serve a dual purpose in low-carbon composite cementitious material. They enhance compactness by acting as fillers and promote cement hydration through surface activity, thereby enhancing mechanical properties, durability, and pore size distribution.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3