Analysis of Resistance Characteristics and Research into Resistance Reduction of a Tee Based on Field Synergy

Author:

Yan Yajing1,Song Chongfang1,Pan Wuxuan1,Wang Jie1,Bai Yifan1

Affiliation:

1. School of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The resistance loss and energy consumption when fluid flows through a tee in an HVAC system are severe. To improve energy efficiency and reduce carbon emissions, a novel tee with a U-shaped deflector is proposed, supported by experiments and numerical simulations. The resistance reduction mechanism of the U-shaped deflector was analyzed according to the viscous dissipation principle and the field synergy principle. The resistance reduction of the novel tee with different deflector angles and a traditional tee were compared. The results show that the resistance loss of the tee was mainly due to the flow separation and deformation of the fluid in the main branch. The relationship between the local resistance coefficient and the diameter ratio of the main-branch pipe was exponential, and the relationship between the local resistance coefficient and the diameter ratio of the main straight pipe was linear. The total resistance loss reduction rate of the tee with the addition of a 26° deflector was the highest, reaching 72.4%, the volume-weighted average synergy angle increased by 1°, and the viscous dissipation decreased by 21.7%. This study provides a reference for the resistance reduction design of complex local components such as tees in HVAC systems.

Funder

Applied Basic Research Program of Shanxi

Science and Technology Innovation Teams of Shanxi Province

Publisher

MDPI AG

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3