Abstract
Knowledge of body motion features and walk-induced effects is of primary importance for the vibration analysis of structures, especially low-frequency slabs and lightweight and/or slender systems, as well as for clinical applications. Structurally speaking, consolidated literature procedures are available for a wide set of constructional solutions and typologies. A basic assumption consists in the description of walking humans’ effects on structures through equivalent deterministic loads, in which the ground vertical reaction force due to pedestrians depends on their mass and motion frequency. However, a multitude of additional parameters should be taken into account and properly confirmed by dedicated laboratory studies. In this paper, the focus is on the assessment of a rapid analysis protocol in which attention is given to pedestrian input, based on a minimized sensor setup. The study of gait variability and related effects for structural purposes is based on the elaboration of single Wi-Fi sensor, body centre of mass (CoM) accelerations. A total of 50 walking configurations was experimentally investigated in laboratory or in field conditions (for more than 500 recorded gaits), with the support of an adult volunteer. Parametric gait analysis is presented considering different substructure conditions and motion configurations. Body CoM acceleration records are then used for the analysis of a concrete slab, where the attention is focused on the effects of (i) rough experimental body CoM input, or (ii) experimentally derived synthetized gait input. The effects on the structural side of rough experimental walk time histories or synthetized experimental stride signals are discussed.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference36 articles.
1. Vibrations in Structures Induced by Man and Machines;Bachmann,1987
2. Vibrations in structures induced by man and machines;Bachmann;Can. J. Civ. Eng.,1987
3. Generalisation of Criteria for Floor Vibrations for Industrial, Office, Residential and Public Building and Gymnasium Halls;Sedlacek,2006
4. Quantification of changes in modal parameters due to the presence of passive people on a slender structure
5. Vibration Testing, Analysis, and Human-Structure Interaction Studies of a Slender Footbridge
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献