The Accuracy of Frequency Estimation of Structure Vibration under Ambient Excitation: Problems, Causes, and Methods

Author:

Deng Chang1,Wen Jiaqi1,Tang Lei1,Cai Xin2,Peng Feng1

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

2. College of Mechanics and Materials, Hohai University, Nanjing 210098, China

Abstract

Accurate identification of building structure frequencies forms the basis for damage detection. The structural dynamic response signal, under ambient excitation, can be transformed into a superposition of multiple single-frequency exponentially damped sinusoids combined with random white noise. However, the peak power spectrum of the response signal tends to exhibit line splitting, compromising the precision of frequency identification. This study examines the accuracy characteristics of the single-frequency free damping vibration signal (SFFDVS) and derives the Cramer–Rao lower bound for the frequency estimator. It thoroughly analyzes the factors influencing the accuracy of SFFDVS frequency identification. The study reveals that the primary cause of spectral line splitting is the random delay inherent in SFFDVS. Based on the maximum likelihood method (MLM), this research introduces the MLM algorithm for SFFDVS and provides a simulation analysis. The findings indicate that the MLM estimation algorithm for frequency parameters effectively addresses spectral line splitting and offers robust noise resistance and recognition accuracy.

Funder

National Key Research and Development Program of China

Water Conservancy Technology Demonstration Project

Special Fund Project of Basic Scientific Research Business Fee for Central Public Welfare Scientific Research Institutes

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3