Affiliation:
1. Gansu Provincial Road Materials Engineering Laboratory, Gansu Provincial Transportation Research Institute Group Co., Ltd., Lanzhou 730001, China
2. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
Abstract
Machine learning (ML) algorithms have been widely used in big data prediction and analysis in terms of their excellent data regression ability. However, the prediction accuracy of different ML algorithms varies between different regression problems and data sets. In order to construct a prediction model with optimal accuracy for fly ash concrete (FAC), ML algorithms such as genetic programming (GP), support vector regression (SVR), random forest (RF), extremely gradient boost (XGBoost), backpropagation artificial neural network (BP-ANN) and adaptive network-based fuzzy inference system (ANFIS) were selected as regression and prediction algorithms in this study; the particle swarm optimization (PSO) algorithm was also used to optimize the structure and hyperparameters of each algorithm. The statistical results show that the performance of the assembled algorithms is better than that of an NN-based algorithm. In addition, PSO can effectively improve the prediction accuracy of the ML algorithms. The comprehensive performance of each model is analyzed using a Taylor diagram, and the PSO-XGBoost model has the best comprehensive performance, with R2 and MSE equal to 0.9072 and 11.4546, respectively.
Funder
Fund of Small and Medium Enterprise Innovation Project of Gansu Provincial Department of Science and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献