Effect of Precompression and Material Uncertainty on the In-Plane Behavior of URM Pier–Spandrel Systems

Author:

Pulatsu BoraORCID,Gonen SemihORCID,Parisi FulvioORCID

Abstract

Theoretical and experimental studies on loadbearing masonry walls have shown the significant influence of the axial load level (i.e., precompression) and wall aspect ratio on in-plane lateral resistance. Nonetheless, the impact of the precompression and spatial variability of the material properties needs to be further investigated at the scale of walls with openings. This study presents a stochastic analysis of unreinforced (URM) pier–spandrel systems subjected to both axial loads on piers and lateral loads, considering the spatial variation in material properties. A discontinuum-based computational model was utilized to assess the force–displacement behavior of a benchmark pier–spandrel structure under different vertical precompression levels on piers. A total of 750 simulations were carried out to propagate material uncertainties in lateral load analysis. The proposed modeling strategy, based on the discrete element method, explicitly represents joint openings, sliding, and crushing phenomena at the contact points defined between the adjacent discrete rigid blocks. According to the validated computational modeling strategy, meaningful inferences were made regarding the effect of the precompression level on the maximum displacement and ultimate lateral load-carrying capacity of the benchmark URM pier–spandrel system. The results showed that vertical pressure on piers had considerable influence on the displacement ductility of the system while yielding less variation in the displacement capacity. Furthermore, the appealing feature of the spatial probabilistic analysis is noted in the variation in the lateral load-carrying capacity of the structural system.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3