Flexural Behaviour of Lightweight Reinforced Concrete Beams Internally Reinforced with Welded Wire Mesh

Author:

Chandramouli PavithraORCID,Muthukrishnan Dinesh,Sridhar Venkatesh,Sathish Kumar VeerappanORCID,Murali GunasekaranORCID,Vatin Nikolai IvanovichORCID

Abstract

Lightweight clay aggregate (LECA) is manufactured by heating clay with no lime content in the kiln; as a result, the water evaporates and angular clay balls with pore structures are obtained. LECA possess internal curing properties as any other lightweight aggregate due to their pore structure and higher water absorption capacity. In this work, experimental and analytical behaviour using LECA as a 100% replacement for coarse aggregate to make lightweight concrete (LWC) beams was studied. The LWC beams were compared to the conventional concrete beams in load-deflection, energy absorption capacity, and ductility index. Internal mesh reinforcement using welded wire mesh (WWM) of (4 layers of 15 mm square spacing, 4 layers of 10 mm square spacing, and 4 layers of 15 mm and 10 mm mesh placed alternatively) was provided to enhance the load-carrying capacity of the LWC beam without increasing the dimensions and self-weight of the beams. The beam internally reinforced with WWM exhibited higher load carrying capacity and withstood more significant deflection without sudden failure. The internal reinforcement of WWM is provided to make steel rebars, and WWM works monolithically while loading; this will reduce the stress on tension bars and increase load-carrying capacity. Finally, the generated analytical findings agreed well with the experimental data, demonstrating that the analytical model could mimic the behaviour of LWC beams with WWM.

Funder

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-class Research Center program: Advanced Digital Technologies

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference41 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3