Experimental Study on Wind Loading Characteristics of Trains under Stationary Tornado-like Vortices

Author:

Li Peng,Li Bo,Han Xiaoyu,Tian Yuji,Li Ruoqi

Abstract

The risk of trains being hit by tornadoes in China continues to increase due to the increasing density of railway lines and the shortening of the train departure intervals and the increasing probability of extreme weather phenomena caused by global climate change. If a train is hit by a tornado, it will cause huge casualties and economic losses, so it is necessary to investigate the tornado-induced effects on trains. A series of rigid-model wind pressure measurement tests on a train car under tornado wind loading were conducted using a tornado-vortex simulator, in order to determine the effects of the distance between the train car and the tornado’s center, the swirl ratio of a tornado-like vortex, and the ground roughness on the wind pressure distributions and wind load characteristics on trains. Apparent discrepancies were observed between tornado-induced wind loading and lateral wind loading obtained from conventional boundary-layer wind tunnel tests. The wind pressure and wind load on the car surface are mainly affected by the combined effects of the aerodynamic flow-structure interaction and the pressure drop accompanying the tornado within 1.5 times the vortex core’s radius, and the impact of tornado-like vortices on the train car is almost negligible as the distance from the train car to the tornado’s center exceeds three times vortex core’s radius. The variation trend of mean/fluctuating pressure coefficients is generally consistent. Large values of fluctuating pressure exist mainly on the top and side surfaces of the train car, especially the side surface proximal to the tornado’s center. The most unfavorable mean sectional side force coefficients were found when the train car is located in the tornado’s core and the largest lift force coefficients at the tornado’s center. The overall side force coefficients peaked when the train car is located at a distance of 1.5 times the tornado’s core radius, whereas the largest lift force coefficients were found when the train car was located at the tornado’s center. The overall distribution patterns of the wind force coefficients of the car under different swirl ratios and ground roughness levels are basically the same. The peak aerodynamic force value increases with increasing swirl ratio, and it decreases as ground roughness increases.

Funder

the National Natural Science Foundation of China

the 111 project of the Ministry of Education and the Bureau of Foreign Experts of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3