Preliminary Study on the Damping Effect of a Rotational Inertia Particle Damper Considering the Explosion Response of Continuous Concrete Bridges

Author:

Xie Mengfei1,Xu Weibing1ORCID,Wang Jin2,Chen Yanjiang1,Zhou Daxing3,Hou Liqun3,Yan Qiushi1

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100021, China

2. School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China

3. China Railway Construction Group Co., Ltd., Beijing 100040, China

Abstract

The possibility of blast impact loads acting on bridge structures is gradually increasing. The local and entire explosion response law of a concrete box girder bridge is still unclear, and anti-explode devices for reducing the entire explosion response of a bridge are scarce. In this study, a rotational inertia particle damper (R-IPD) and a 1:4 scale model of a typical three-span continuous-girder bridge were designed and manufactured. Subsequently, an explosion test of the bridge model with and without R-IPDs was conducted. The results showed that the local dynamic response (LDR) of the bridge model was more likely to occur under an explosion load. The local overpressure, strain, and acceleration responses of the box girder near the explosion centre were more significant than those at other locations or of other components. Moreover, the LDR of the box girder was similar in the middle and side spans. As the explosive equivalent (EE) increased, the entire displacement response (EDR) of the model bridge increased. Under the same EE conditions, a larger span suffered a larger EDR. After the R-IPD installation, the EDR of the bridge model decreased. Furthermore, the damping effect of the R-IPDs on the EDR of the bridge model increased with an increase in the EE, and the maximum vibration reduction rate was up to 12%. However, the damping effect of the R-IPDs on the LDR of the model bridge was not obvious. The damping effect of the R-IPDs depended on the relative displacement between the two ends of the damper and exhibited obvious hysteresis.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3