Urban Construction Waste Recycling Path: Robust Optimization

Author:

Wu Fan1ORCID,Mei Shue1,Xu Haiying2,Hsu Wei-Ling3ORCID

Affiliation:

1. School of Economics and Management, Southeast University, Nanjing 211100, China

2. School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, China

3. School of Civil Engineering, Jiaying University, Meizhou 514015, China

Abstract

The world produces a huge amount of urban construction waste each year. Scientific planning of the construction waste recycling path is urgently needed to improve the recycling of construction waste. Existing construction waste recycling models do not pay sufficient attention to the uncertainty of the recycling quantity, which limits their ability to provide support for solving practical problems. The purpose of this paper is to solve the problem of uncertain recycling quantities in optimizing the urban construction waste recycling path. Thus, this paper first builds a recycling model for a deterministic environment with the economic objective as the decision criterion and the transportation flow, construction waste treatment capacity and capability, and environmental and social impact as the constraints. Then, a robust optimization method is adopted to optimize the deterministic model for the uncertainty of the recycling quantity. The data of this paper are from Nanjing, China. The validity of the model and the evolution of the recycling path are tested based on the data of Nanjing. The findings of this paper are as follows: Firstly, the robust model is cost-effective in the face of uncertainty in supply. Secondly, the robust model has greater total treatment capacity. Even in the worst-case scenario, it can guarantee a higher treatment capacity. Thirdly, both models follow the proximity principle which reduces the transportation costs and only slowly increases the total cost of the robust model. This paper provides a scientific and convenient tool to plan the recycling path of construction waste in large cities.

Funder

National Key R&D Program

2020 Major Project about the Philosophy and Social Sciences of Higher Education in Jiangsu Province, China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3