Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review

Author:

Sharmin Shaila1,Biswas Wahidul K.2ORCID,Sarker Prabir K.1ORCID

Affiliation:

1. Civil Engineering Discipline, School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia

2. Sustainable Engineering Group, School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia

Abstract

The application of geopolymers has recently been given significant attention to address climate change and the growing scarcity of construction materials in the 21st century. Researchers have utilized industrial waste or supplementary cementitious materials containing high levels of silica and alumina as precursors along with different alkaline activators. Furthermore, the technical challenges associated with waste brick management or recycling include both land use changes and financial implications. The existence of amorphous aluminosilicates in waste clay bricks, which can be used as geopolymer binders, has drawn attention recently. This paper reviews the recent advancements of the integration of clay brick wastes in geopolymer applications, individually as well as its use with other alternative materials. Prior studies suggest that waste clay bricks can effectively serve as the primary source material in geopolymer applications. This review covers various aspects, including the assessment of fresh, mechanical, microstructure, and durability-related properties. It specifically focused on enhancing these properties of waste clay bricks through mechanical and thermal treatments, through varying curing conditions, utilizing different types of alkaline activators, and considering their properties and corresponding ratios in the development of geopolymer products using waste brick powder. Furthermore, this paper portrays a critical review of the sustainability implications of the utilization of clay brick waste in geopolymer applications. Conclusively, this review provided the lessons learnt, research gaps, and the future direction for investigation into the feasibility of geopolymers derived from waste clay brick powder.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3