Forward Simulation and Complex Signal Analysis of Concrete Crack Depth Detection Using Tracer Electromagnetic Method

Author:

Wang Yulei12,Zhang Shengxing12ORCID,Jia Yu12,Tang Lei12,Tao Jin3,Tian Hui12

Affiliation:

1. Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210024, China

2. The National Key Laboratory of Water Disaster Prevention, Nanjing 210029, China

3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

Cracks are the most typical faults of concrete structures, and their extension can lead to structural fracture. However, when cracks develop inside a structure, the most important depth information is invisible and difficult to measure. The tracer electromagnetic method is an effective technique for detecting the depth of concrete cracks, but since concrete is a multiphase stochastic composite material, its complex internal structure often interferes with the radar detection results, making the conventional radar interpretation technique difficult. In this study, the detection results for concrete crack depth detection based on the tracer electromagnetic method were comprehensively analyzed by combining the complex signal analysis technique, using transient information such as amplitude, phase, and frequency in order to improve the precision and accuracy of radar signal interpretation. In this study, a numerical model was established to determine whether typical cracks such as vertical cracks and diagonal cracks contain indicators or not, and the ground-penetrating radar forward simulation software was used to perform forward simulation of the numerical model and analyze the forward results. The complex signal analysis technique was used to obtain the response characteristics of typical cracks when they did and did not contain the indicator, and the complex signal was finally analyzed by combining it with the actual crack depth detection data. The results show that the tracer electromagnetic method can significantly improve the crack bottom’s reflection ability for radar signals, and when the crack bottom contains an indicator, the amplitude of the reflected signal at the bottom of the crack is enhanced, the phase is reversed, and the frequency is reduced. The distribution of the crack morphology and the location of the crack bottom can be analyzed more conveniently by using the complex signal analysis technique.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3