A Fast and Non-Destructive Prediction Model for Remaining Life of Rigid Pavement with or without Asphalt Overlay

Author:

Hong Xuan,Tan Weilin,Xiong ChunlongORCID,Qiu Zhixiong,Yu Jiangmiao,Wang Duanyi,Wei Xiaopeng,Li Weixiong,Wang Zhaodong

Abstract

Remaining life is an important indicator of pavement residual effective service time and is directly related to maintenance decision-making with limited funds. This paper proposes a fast and non-destructive model to predict the remaining life of rigid PCC (Portland cement concrete) pavement, with or without asphalt overlay. Firstly, a model was constructed according to the current Chinese design specifications for concrete pavement integrating an inverse design concept. Secondly, the prediction model was applied to three typical pavement sections with 1430, 1250 and 1000 slabs, respectively. Ground penetrating radar (GPR) was utilized to determine the geometric parameters in the predictive model and the physical state of the pavement. A falling weight detector (FWD) was utilized for determination of the mechanical parameters. A more reasonable equivalent elastic modulus of foundation was back-calculated instead of using the limited model in the design specification. Thirdly, the remaining life was predicted based on the current mechanical and geometric parameters. The distributions of the remaining life of the three pavement sections was statistically analyzed. Finally, a decision-making system to inform maintenance strategy was proposed based on the remaining life and the technical condition of each slab. The results showed that the relationship between the remaining life and the mechanical parameters, geometric parameters and the physical state of the pavement was highly consistent with engineering experience. The success rate of the prediction model was as high as 96%. The proposed fast and non-destructive prediction model showed good engineering applicability and feasibility. The decision-making system was shown to be feasible in terms of economic benefits.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3