Influence of Non-Constant Hygrothermal Parameters on Heat and Moisture Transfer in Rammed Earth Walls

Author:

Tan Jiaye,Liang Jiahua,Wan Li,Jiang BinORCID

Abstract

As environment-friendly building materials, earth materials are attracting significant attention because of their favorable hygrothermal properties. In this study, the earth materials in northwest Sichuan were tested and curves of thermal conductivity and water vapor permeability with relative humidity were obtained. The function curves and constants of the two coefficients were substituted into the verified nonstationary model of heat and moisture transfer in rammed earth walls and indoor air for calculation. The difference in the calculation results when the hygrothermal parameters are functions and constants were analyzed, and the influence of the non-constant hygrothermal parameters on the heat and moisture transfer in rammed earth walls, was obtained. The test results show that thermal conductivity is linearly related to moisture content, and water vapor permeability has a small variation in the relative humidity range of 0–60% and increases exponentially above 60%. The calculation results indicate that the non-constant hygrothermal parameters have little influence on the internal surface temperature of the rammed earth walls and Mianyang City’s indoor air temperature and humidity during the summer and winter. The heat transfer on the internal surface will be underestimated by using a non-constant for the hygrothermal parameter when the moisture content of the wall is low, and vice versa. In hot-humid areas or seasons with large differences in temperature and humidity between indoors and outdoors, non-constant hygrothermal parameters have a more obvious effect on heat transfer on the internal surface of the wall. The results of this study demonstrate the necessity of parameter testing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3