Research on Experimental and Numerical Methods for Mechanical Properties of Lightweight Hollow Precast Utility Tunnels

Author:

Feng Yutao,Li WeibinORCID,Lu NanORCID

Abstract

In this paper, the mechanical properties of hollow precast utility tunnels are studied by experimental and numerical methods. Through full-scale experiments, the failure modes of ordinary and hollow utility tunnels are studied, and the failure stages of the structures are classified based on the bearing capacity and damage to the structures. The nonlinear finite element model is used to simulate the behavior of the structure, and the optimal design of the structure under load type and the hollow ratio are discussed based on the finite element method. The theoretical calculation method of the bearing capacity for hollow structures in each stage is proposed, and its application scope is discussed. The finite element analysis can effectively predict the mechanical properties of the structure, and the failure of the utility tunnel structure is dependent on the shear bearing capacity. Although hollow design advances the structural damage under point load, the hollow structure has significant advantages under uniform loads or reasonable hollow ratios. It is reasonable to calculate the cracking load considering moment distribution at section centroid and the failure load considering the combined action of flexural and shear stress, but the hollow ratio should be less than 16%. Under reasonable hollow ratio or load conditions, the hollow design has little effect on the bearing capacity of the structure and can reduce the weight, which has practical value for architecture and construction.

Funder

National Natural Science Foundation of China

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3