A Comparative Study of the Simulation Accuracy and Efficiency for the Urban Wind Environment Based on CFD Plug-Ins Integrated into Architectural Design Platforms

Author:

Hu Yongyu,Xu Fusuo,Gao ZhiORCID

Abstract

The deterioration of the urban environment is a problem which has captured the attention of governmental departments and researchers, who are committed to improving the urban environment from the perspective of optimizing urban morphology. Although many researchers have applied computational fluid dynamics (CFD) plug-ins to study the problems of urban ventilation and pollutant accumulation, studies on the reliability and simulation accuracy verification of CFD plug-ins are currently scarce. Therefore, we used three CFD plug-ins based on different architectural design platforms to evaluate and compare their operation difficulty, simulation accuracy, and efficiency through the analysis of the simulation results of urban ventilation. This study complements the reliability validation of CFD plug-in simulations and guides urban planners and architects in the selection and application of CFD plug-ins. The results show that the CFD plug-in generally underestimates the wind speed at the pedestrian level and the prediction accuracy is poor in the wake area of obstacles, especially with the GH_Wind plug-in. Under the 0° inflow direction, the simulation results of the Butterfly plug-in were the most consistent with the experimental values. When the inflow direction increased to 22.5° and 45°, the Autodesk CFD showed the best simulation accuracy. Overall, Autodesk CFD achieves a balance between simulation accuracy and speed in urban airflow simulation.

Funder

The opening project of the Joint International Research Laboratory of Eco-Urban Design (Tongji University), Ministry of Education

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3