Study on the Influence of a Rubber-Modified Soil Isolation Layer on the Isolation Performance of Frame Structures with Different Foundation Forms

Author:

Chai Shaoqiang1,Chen Yong1,Cai Dongbo1,Wang Wei1,Chen Qihao1,Liu Jinhao2

Affiliation:

1. The Seventh Engineering Co., Ltd. of CFHEC, Zhengzhou 451450, China

2. School of Civil Engineering, Chang’an University, Xi’an 710064, China

Abstract

In order to investigate the seismic performance of a rubber-modified soil isolation layer, a three-dimensional finite element model was constructed using finite element analysis software, utilizing a two-story frame structure as the engineering background. Nonlinear dynamic time history analysis and comparisons were performed against the seismic performance of the structure. The evaluation was based on several parameters, including the contact area of the base, the thickness of the rubber-particle-modified soil isolation layer, ground motion records with varying amplitudes, and seismic frequency spectrum characteristics. The research findings indicate that the implementation of a rubber-modified soil isolation layer effectively mitigates the peak acceleration, horizontal displacement, and shear stress of the frame structure. This not only enhances the seismic performance of the structure but also enlarges the contact area of the base. Increasing the thickness of the rubber-modified soil isolation layer will effectively decrease the peak acceleration, horizontal displacement, and shear stress of the structure during seismic events. The effectiveness of the isolation provided by the rubber-modified soil layer improves as the intensity of the ground motion record increases.

Funder

Natural Science Basic Research Plan in Shaanxi Province

research on the dynamic characteristics of rubber-particle-improved ground bases and the key technology of structural shock absorption

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3