A Comprehensive Study on Integrating Clustering with Regression for Short-Term Forecasting of Building Energy Consumption: Case Study of a Green Building

Author:

Ding Zhikun,Wang ZhanORCID,Hu Ting,Wang Huilong

Abstract

Integrating clustering with regression has gained great popularity due to its excellent performance for building energy prediction tasks. However, there is a lack of studies on finding suitable regression models for integrating clustering and the combination of clustering and regression models that can achieve the best performance. Moreover, there is also a lack of studies on the optimal cluster number in the task of short-term forecasting of building energy consumption. In this paper, a comprehensive study is conducted on the integration of clustering and regression, which includes three types of clustering algorithms (K-means, K-medians, and Hierarchical clustering) and four types of representative regression models (Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Regression (SVR), Artificial Neural Network (ANN), and extreme gradient boosting (XGBoost)). A novel performance evaluation index (PI) dedicated to comparing the performance of two prediction models is proposed, which can comprehensively consider different performance indexes. A larger PI means a larger performance improvement. The results indicate that by integrating clustering, the largest PI for SVR, LASSO, XGBoost, and ANN is 2.41, 1.97, 1.57, and 1.12, respectively. On the other hand, the performance of regression models integrated with clustering algorithms from high to low is XGBoost, SVR, ANN, and LASSO. The results also show that the optimal cluster number determined by clustering evaluation metrics may not be the optimal number for the ensemble model (integration of clustering and regression model).

Funder

National Nature Science Foundation of China

Shenzhen Government Nature Science Foundation

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3