Experimental and Seismic Response Study of Laminated Rubber Bearings Considering Different Friction Interfaces

Author:

Zhang BingzheORCID,Wang KehaiORCID,Lu Guanya,Qiu Wenhua,Yin Weitao

Abstract

Unbonded LRBs (laminated rubber bearings) are commonly applied in small-to-medium-span bridges in China. The frictional sliding characteristics of LRBs have a vital influence on the seismic response of the bridge. Nine square LRBs were subjected to the quasi-static displacement loading test in this paper, and the differences in sliding characteristics of LRBs at the interface of steel and concrete test pad were investigated. The variation of the friction coefficient during sliding was then analyzed. Based on the experimental data, a three-fold mechanical constitutive model of LRBs that considers the breakaway-sliding friction characteristics is established. Further, the bridge seismic demands in longitudinal directions with different friction interfaces are compared by nonlinear dynamic analysis on a typical LRB-supported concrete bridge. The results show the causalities of the displacements and decreases of the friction coefficient of the LRB. The breakaway coefficient of friction of the concrete surface was generally greater than that of the steel in the pre-sliding stage, while the sliding coefficient of friction of the steel interface in the post-sliding stage was greater than that of the concrete. Moreover, the proposed three-fold constitutive model is able to simulate the frictional sliding behavior of LRBs accurately. Lastly, the seismic design of small-to-medium-span bridges should take into account the breakaway-sliding friction effect of the LRBs and the preference for steel as friction pads for LRBs is recommended.

Funder

Scientific Research Fund of Institute of Engineering Mechanic of China Earthquake Administra-tio

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3