The Use of Sargasso Seaweed as Lignocellulosic Material for Particleboards: Technical Viability and Life Cycle Assessment

Author:

Duran Afonso José Felício Peres1ORCID,Lyra Gabriela Pitolli1,Campos Filho Luiz Eduardo1ORCID,Bueno Cristiane2ORCID,Rossignolo João Adriano3ORCID,Alves-Lima Cicero4,Fiorelli Juliano3

Affiliation:

1. Material Sciences and Engineering Graduate Program, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga 13635-900, SP, Brazil

2. Department of Civil Engineering, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, SP, Brazil

3. Department of Biosystems Engineering, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (USP), Pirassununga 13635-900, SP, Brazil

4. Department of Biochemistry, Instituto de Química, Universidade de São Paulo (USP), São Paulo 05508-900, SP, Brazil

Abstract

There have been beaching events of the marine alga pelagic sargassum in coastal regions of the Caribbean Sea, West African countries, and the north-northeast region of Brazil since 2011. Its presence has caused environmental and socioeconomic impacts while several studies were conducted in order to understand the causes of this phenomenon, as well as alternatives to mitigate its impacts. The objective of this research was to evaluate pelagic sargassum biomass from beaching as a raw material for the manufacture of medium-density multilayer particleboards, aiming for an application that can reduce the impacts generated by the disposal of this seaweed on beaches and landfills. These are composed of 30% sargassum particles in their inner layer and 70% sugarcane bagasse particles on their outer layers, which are bonded with castor-oil-based polyurethane resin. A physical and chemical characterization was carried out in order to evaluate sargassum particles while physical and mechanical tests were carried out in order to evaluate the panels. Results were subsequently compared with indications from different particleboard standards. A life cycle assessment was carried out to complement the feasibility study of these panels and to compare their different manufacturing processes. The multilayer panels met the minimum requirements for physical and mechanical properties established by regulations, indicating that the Sargassum spp. biomass can be used as filling. The life cycle assessment study indicates that sargassum panels produced in the Belém, PA, Brazil, region present lower environmental impacts in four of seven evaluated categories when compared to conventional panels. Given the results obtained, the use of sargassum from beaching events as raw material for panels can be presented as an alternative for reducing social, economic, and environmental impacts in the regions affected by these events.

Funder

FAPESP—Fundação de Amparo à Pesquisa do Estado do São Paulo

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3