Experimental Study of the Factors Influencing the Performance of the Bonding Interface between Epoxy Asphalt Concrete Pavement and a Steel Bridge Deck

Author:

Chen ZhengxiongORCID,Xu WeiORCID,Zhao Jian,An Luming,Wang Feng,Du Zizhan,Chen Qiang

Abstract

The bonding between pavement and a steel bridge deck is a key component affecting the structural integrity of steel deck pavement and delamination is a major cause. The bonding interface of steel deck pavement was systematically investigated to evaluate the interactive influences of factors, such as the air void of the asphalt concrete pavement, the surface roughness of the steel deck, the thickness of the zinc-rich epoxy primer, and the waterproof bonding membrane, on the bond strength of the pavement interface, through simulated loading, brine immersion, pull-off, and interface observation experiments. The results show that a low air void (<3.0%) was a necessary condition for the corrosion resistance and bonding reliability of the steel deck pavement structure, and a zinc-rich epoxy primer provided an additional guarantee for corrosion resistance of the steel deck pavement; additionally, the combination of steel deck plate roughness in the range of 120–140 μm and zinc-rich epoxy primer thickness in the range of 80–110 μm led to a high bond strength, which was also conducive to the corrosion resistance of the steel bridge plate. The steel deck pavement structure should be designed through combinatorial optimization of multiple factors to create an integrated waterproof and anticorrosion bonding system.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation in China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3