Displacement and Internal Force Response of Mechanically Connected Precast Piles Subjected to Horizontal Load Based on the m-Method

Author:

Gao Li12,Zhuang Mei-Ling34,Zhang Qunqun5,Bao Guangdong4,Yu Xiaoyang4,Du Jiahao4,Zhou Shengbo12,Wang Mingsen3

Affiliation:

1. School of Civil Engineering and Architecture, Suqian University, Suqian 223800, China

2. Jiangsu Province Engineering Research Center of Prefabricated Building and Intelligent Construction, Suqian University, Suqian 223800, China

3. Water Resources Research Institute of Shandong Province, Jinan 250013, China

4. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

5. School of Transportation and Civil Engineering, Anhui Jianzhu University, Hefei 23061, China

Abstract

Mechanically connected precast piles are a type of precast piles that utilise snap-type mechanical connectors to restrain the pile ends of two identical or different precast piles at the top and bottom so as to quickly realise the purpose of the connection. However, the gap problem in the connectors of mechanically connected piles can lead to uneven and uniform deformation of the piles under horizontal loading, resulting in additional displacements and rotation angles of the piles at the connection. Solving the problem of calculating the internal force response of discontinuous deformed piles is a prerequisite for promoting and applying mechanically connected precast piles. Firstly, the theoretical derivation of mechanically connected piles with fixed constraints at the pile bottom is carried out. Secondly, the pile response equations of mechanically connected piles are established, and the theoretical solutions of pile displacement and internal force response of mechanically connected piles under horizontal loading are derived. Thirdly, the pile-soil model of the test pile is established using ABAQUS software (ABAQUS 2016) in combination with the design data of the test pile. The numerical simulation displacements and angles of rotation are compared with the test results. Finally, the theoretical and numerical simulation displacements and internal forces of the ordinary pile and the mechanically connected pile are compared. The relative errors of the displacements and angles of rotation of the established pile-soil model are less than 10%, indicating that the established model has good accuracy. The relative errors of the theoretical and numerical simulation displacements and internal forces of the mechanically connected pile are less than 10%, proving the correctness of the theoretical calculation by the m-method. This study can provide effective theoretical support and methodological guidance for the displacement and internal force response of discontinuous piles.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3