Influence of Buried Pipeline Leakage on the Development of Cavities in the Subgrade

Author:

Chen Xianghua1,Chen Wenxin2,Zhao Liyuan2,Chen Yekai2

Affiliation:

1. Guangzhou Traffic Design and Research Institute Co., Ltd., Guangzhou 510430, China

2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

Abstract

The rapid pace of urbanization has led to an increasing frequency of road collapses, posing a significant threat to urban traffic safety. Underground pipeline leakage stands out as the primary cause of such collapses. This paper presents a macroscopic analysis of the subgrade seepage erosion process caused by pipeline leakage. Model tests were conducted to investigate the formation mechanism and explore the influence of water level, water flow rate, and soil type. The study revealed that the subgrade seepage erosion caused by pipeline leakage undergoes four distinct stages: infiltration, slow erosion, rapid erosion, and erosion convergence. Soil erosion shares similarities with sand erosion in its developmental process. The water level plays a pivotal role in determining the shape and size of the eroded area caused by sand seepage erosion. The size of the erosion cavities formed during the soil seepage erosion increased along with the increase in the water flow rate. The size of the erosion cavity increased by up to 55.7% when the flow rate was increased by three times. In addition, clay soils do not undergo significant erosional damage but do produce significant settlement. The soil erosion process caused by underground leakages in pipelines was investigated using model tests in this study, which provided valuable information for researchers performing an in-depth analysis of the mechanism of roadbed cavities generated by urban underground pipeline leakage, which is critical for safeguarding people’s travel safety and decreasing social and economic losses.

Funder

the National Natural Science Foundation of China

the project of Zhejiang Provincial Construction Department

the project of Zhejiang Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3