Abstract
This study proposes a cost-effective prestress monitoring method for post-tensioned reinforced concrete (RC) beams using a smart strand. Firstly, the concept of a piezoelectric-based smart strand and its implementation for prestress force monitoring are developed. The smart strand is prepared by embedding inexpensive and high-sensitivity electromechanical impedance (EMI) sensors in a steel strand. Next, the feasibility of the proposed method is experimentally verified for prestress force monitoring of a simple supported post-tensioned RC beam. A smart strand prototype is fabricated and embedded into a 6.4 m RC beam which is then prestressed with different levels. For each prestress level, the EMI responses of the smart tendon are measured and the EMI features are extracted for prestress force monitoring. The results showed that the EMI signals of the smart strand showed strong resonant peaks that varied sensitively to the prestress level of the beam. The prestress change in the prestressed RC beam was successfully estimated by using linear regression models of the EMI features.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献