Experimental Investigation on the Seismic Behavior of Precast Concrete Beam-Column Joints with Five-Spiral Stirrups

Author:

Zheng Jinhu1,Pan Zezhou1,Zhen Hao1,Deng Xuhua2,Zheng Chumao2,Qiu Zhenye2,Xie Longpan1,Xiong Zhe1,Li Lijuan1ORCID,Liu Feng1

Affiliation:

1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Guangdong Foundation New Century Concrete Co., Ltd., Guangzhou 510660, China

Abstract

Precast concrete structure is a low-carbon building system that has been attracting extensive attention in recent decades. Beam–column joints are the weak links in precast concrete structures. Past studies showed that the five-spiral stirrups had excellent confinement effects and had the potential to enhance the seismic performance of concrete structures. This study proposed the reinforcement of precast concrete beam–column joints by using five-spiral stirrups and investigated their seismic performance. Considering the influences of the joint failure mode, joint type, construction method, and stirrup type, low-cycle loading tests were conducted on six full-scale precast concrete beam–column joint specimens. Various seismic behavior indicators, such as failure modes, hysteresis curves, skeleton curves, ductility, and energy dissipation, were obtained. The results indicated that the deformation capacity of the precast joints with five-spiral stirrups was comparable to that of cast-in-place joints. Under different failure design criteria, the seismic performance of the precast joints was superior to that of cast-in-place joints. Furthermore, the experimental capacities of the precast joints, using five-spiral stirrups, were higher than the calculated values according to the design code, demonstrating an adequate safety margin. This research contributes to the development of low-carbon and sustainable construction practices in the field of precast concrete structures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3