Source Location Identification in an Ideal Urban Street Canyon with Time-Varying Wind Conditions under a Coupled Indoor and Outdoor Environment

Author:

Dai Yuwei1,Hou Minzhang1,Wang Haidong1ORCID,Tu Wanli1

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China

Abstract

Source location identification methods are typically applied to steady-state conditions under pure indoor or outdoor environments, but under time-varying wind conditions and coupled indoor and outdoor environments, the applicability is not clear. In this study, we proposed an improved adjoint probability method to identify the pollutant source location with time-varying inflows in street canyons and used scaled outdoor experiment data to verify the accuracy. The change in inflow velocity will affect the airflow structure inside the street canyons. Outdoor wind with a lower temperature will exchange heat with the air with a higher temperature inside the street canyon, taking away part of the heat and reducing the heat of the air inside the street canyons. Moreover, the room opening will produce some air disturbance, which is conducive to the heat exchange between the air near the opening and the outdoor wind. Furthermore, the fluctuations of the upper wind will influence the diffusion of the tracer gas. We conducted three cases to verify the accuracy of the source identification method. The results showed that the conditioned adjoint location probability (CALP) of each case was 0.06, 0.32, and 0.28. It implies that with limited pollutant information, the improved adjoint probability method can successfully identify the source location in the dynamic wind environments under coupled indoor and outdoor conditions.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Chen Guang project

Shanghai Municipal Education Commission

Shanghai Education Development Foundation

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3