Affiliation:
1. Faculty of Engineering, Department of Civil Engineering, Istanbul Arel University, Istanbul 34537, Turkey
2. School of the Built Environment, University of Reading, Reading RG6 6AB, UK
3. Faculty of Civil Engineering, Department of Civil Engineering, Yıldız Technical University, Istanbul 34220, Turkey
Abstract
Historical buildings are constructed using a variety of materials, including stone, wood, and combinations thereof. These structures serve as tangible links to the past and are of great importance to cultural heritage, thus necessitating their protection. Throughout history, these buildings and materials have been exposed to various environmental conditions, including climate, wind, humidity, and seismic activity. This study focused on the Florya Atatürk Marine Mansion, Istanbul, a coastal structure situated at the shoreline and subject to the effects of wind, moisture, and sea salt. The mansion is primarily constructed from pinewood, and due to the complexity of the material salt can cause deterioration that poses a threat to the building’s cultural and historical value. With a focus on seasonal variations, this study explored the relationship between the mechanical properties and monetary values of the pinewood materials used in the waterfront mansion. To achieve this, samples were naturally aged in a saline environment by the sea and subjected to tensile and bending tests at the end of each season. The resulting mechanical properties were compared to computer simulations using finite element methods. By subtracting the specific depreciation rate of the material at the end of each season, a relationship between mechanical properties and monetary value was calculated and presented in graphical form. It was found that the material’s mechanical properties varied throughout the year, affecting its monetary value in different ways. Therefore, optimal maintenance should be provided before January to preserve the economic value of the material, considering temperature change, exposure to direct sunlight, and humidity, which have direct effects on the front and back parts of the building.
Reference102 articles.
1. Liu, X., and Zhao, L. (2020). Today’s Modern Coastal Society: Technical and Sociological Aspects of Coastal Research, Coastal Education & Research Foundation. Journal of Coastal Research, Special Issue No. 111.
2. Price, C., Doehne, A., and Stone, E. (2010). Conservation: An Overview of Current Research, J Paul Getty Museum Publications. [2nd ed.].
3. Salt damage and rising damp treatment in building structures;Delgado;Adv. Mater. Sci. Eng.,2016
4. Salts in the Deterioration of porous materials: An overview;Charola;J. Am. Inst. Con-Servation,2000
5. The effect of air temperature, precipitation and humidity on ring widths in the Black locust (Robinia pseudoacacia L.) growing in urban conditions;Kalbarczyk;Wood Res.,2016