Research on the Pile–Soil Interaction Mechanism of Micropile Groups in Transparent Soil Model Experiments

Author:

Wang Ziyi1,Xu Xinyu2,Li Ziqi3

Affiliation:

1. School of Civil Engineering, Dalian University of Technology, Dalian 116024, China

2. Institute of Civil and Architectural Engineering, Tongling University, Tongling 244000, China

3. School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

Micropile groups (MPGs) are typical landslide resistant structures. To investigate the effects of these two factors on the micropile–soil interaction mechanism, seven sets of transparent soil model experiments were conducted on miniature cluster piles. The soil was scanned and photographed, and the particle image velocimetry (PIV) technique was used to obtain the deformation characteristics of the pile and soil during lateral loading. The spatial distribution information of the soil behind the pile was obtained by a 3D reconstruction program. The results showed that a sufficient roughness of the pile surface was a necessary condition for the formation of a soil arch. If the surface of the pile was smooth, stable arch foundation formation was difficult. When the roughness of the pile surface increases, the soil arch range behind the pile and the load-sharing ratio of the pile and soil will increase. After the roughness reaches a certain level, the above indicators hardly change. Pile spacing within the range of 5–7 d (pile diameters) was suitable. The support effect was poor when the pile spacing was too large. No stable soil arch can be formed, and the soil slips out from between the piles.

Funder

Anhui Provincial Department of Education Key Project for Natural Science Research in Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3