Numerical Simulation of the Ventilation and Fire Conditions in an Underground Garage with an Induced Ventilation System

Author:

Wang Zhitao1,Zhou Xue2,Zhu Xiangyuan2,Liu Jiying2ORCID

Affiliation:

1. Youshi Technology Development Co., Ltd., Jinan 250098, China

2. School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China

Abstract

The increasing quantity of air pollutants generated by automobiles can cause significant harm in relatively enclosed indoor environments. Studying the distribution of pollutants under different conditions in underground parking garages is of great significance for improving indoor air quality and reducing casualties in the event of a fire. This article presents a geometric model of an underground parking garage based on PHOENICS modeling. The related results of CO concentration distribution and fire temperature distribution under ventilation and fire conditions are obtained. Based on the CO concentration and velocity distribution as well as the temperature distribution during a fire, reasonable suggestions are proposed to improve indoor air quality and reduce casualty rates in fire incidents. The results show that under ventilation conditions, adjusting the position of the induced ventilation fan can maintain CO concentrations below 30 ppm in partitions one to three and below 37 ppm in partitions four to six. The temperature of smoke gases remained below 50 °C during the evacuation time, and only a small area exhibited CO levels exceeding 2000 ppm. The existing ventilation exhaust system provides effective fire protection, as it minimally affects personnel evacuation due to the relatively lower smoke temperature.

Funder

Natural Science Foundation of Shandong Province

Support Plan for Outstanding Youth Innovation Team in Colleges and Universities of Shandong Province

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3