Post-High-Temperature Exposure Repeated Impact Response of Steel-Fiber-Reinforced Concrete

Author:

Abid Sallal R.ORCID,Abbass Ahmmad A.,Murali GunasekaranORCID,Al-Sarray Mohammed L. J.,Nader Islam A.,Ali Sajjad H.

Abstract

The response of plain and fibrous concrete to the scenario of fired structures exposed to repeated impacts from falling fragmented building elements and other objects is experimentally investigated in this study. The experimental program included the casting and testing of specimens with 0%, 0.5%, and 1.0% hooked-end steel fibers (SFs) under the ACI 544-2R repeated-impact test. The impact test was conducted using cylindrical disk specimens, while 100 mm cubes were used to evaluate the residual compressive strength and weight loss. From each mixture, six disks and three cubes were heated to high temperatures of 200, 400, and 600 °C, while a similar set of specimens were tested without heating as a reference group. The results show that SF could significantly improve cracking impact resistance and dramatically boost failure impact numbers. The retained percentage improvements were the highest for specimens heated to 600 °C, which were approximately 250% at the cracking stage and 1680% at the failure stage for specimens with 1.0% SF. The test results also show that the repeated-impact resistance dramatically deteriorated at high temperatures, where the maximal residual cracking and failure impact numbers after exposure to 200, 400, and 600 °C were approximately 20% and 40%, 4% and 7%, and 2.2% and 4%, respectively.

Funder

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program 'Priority 2030'

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference97 articles.

1. World Fire Statistics, Center of Fire Statistics of CTIF;Brushlinsky,2018

2. Review of concrete flat plate-column assemblies under fire conditions

3. Properties of Materials at High Temperatures—Concrete;Schneider,1985

4. Effects of test conditions and mixture proportions on behavior of high strength concrete exposed to high temperatures;Phan;ACI Mater. J.,2002

5. The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3