Economical Design Comparison of Large-Span Composite Floor Systems with I Beams and Corrugated Web Beams

Author:

Wu Yifan12,Pan Wenhao1345ORCID,Luo Yaozhi145

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China

3. Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, China

4. Key Laboratory of Space Structures of Zhejiang Province, Hangzhou 310058, China

5. Future City Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China

Abstract

A comparative study of composite floor systems with I-beams and corrugated web beams is performed based on non-linear programming (NLP) algorithm. The optimization is conducted to find the most economical design with minimum steel consumption considering variables associated with the cross-sectional dimensions and multiple constraints from standards, specifications and engineering practices. Various parameters of live loads ranging from 2 to 10 kN/m2 and spans ranging from 20 to 100 m are considered. The optimization results reveal that composite floors with corrugated web beams have reasonable and economical cross-sections with less steel consumption, owing to the high performance of the corrugated web in shear resistance and stability. Further comparative studies show that composite floors with corrugated web beams are economically competitive for spans larger than 30 m with a steel saving of 20–60%, and composite floors with welded I-beams can be applicable for spans less than 30 m considering the simpler configuration and construction. In addition, a spatially structured cable-supported steel–concrete composite floor system is proposed and recommended for super-large-span floor structures considering the cost-effectiveness of the analyzed floor systems reduces as the span further increases.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natrural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3