Affiliation:
1. Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
2. Department of Civil Engineering, Liwa College of Technology, Abu Dhabi 22204, United Arab Emirates
Abstract
Due to growing populations, approximately one billion scrap tires are generated annually worldwide. This is a problem particularly in more developed countries where the per-head share of scrape tires is much higher than the global average. The adverse environmental impacts associated with landfilling scrap tires made it imperative to promote eco-friendly solutions such as utilizing them in civil engineering applications. This paper explores the use of tire-derived aggregates (TDAs) with large particle sizes that require less energy to produce as a substitute for traditional aggregates in concrete production. A comprehensive experimental program was conducted to study the effects of the TDA content on the density, compressive strength, elastic modulus, strain at failure, splitting tensile strength, and flexural strength of rubberized concrete at 28 days. Furthermore, with the aim of improving the tensile and flexural properties of rubberized concrete, the use of polyvinyl alcohol (PVA) fibers was also investigated in this study. A total of 126 specimens, half of them containing PVA fibers, were prepared from fourteen different concrete mixtures with varying percentages of TDAs replacing coarse aggregates. Results indicate that a reasonable TDA content of less than 20% can be used to produce concrete with comparable or even superior properties for specific applications requiring moderate strength and higher deformability while reducing waste tires in landfills. In addition, adding 1% PVA fibers to the mixtures was found to enhance the specimens’ compressive, tensile, and flexural strengths and reduce the observed loss of strength rate in rubberized concrete, especially at higher TDA contents. Overall, this research suggests that TDAs can be a sustainable and cost-effective solution for applications that do not require great concrete compressive strength but a more accommodating plastic behavior.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Reference57 articles.
1. United Nations (2018). World urbanization prospects: The 2018 revision. Int. J. Psychol., S1, 443–447.
2. Waste management—Still a global challenge in the 21st century: An evidence-based call for action;Wilson;Waste Manag. Res.,2015
3. Development of an Empirical Hyperbolic Material Model for TDA Using Large Scale Triaxial Testing;Ashari;Int. J. Geotech. Eng.,2021
4. (2022, November 01). Canadian Association of Tire Recycling Agencies Annual Report 2020. Available online: https://www.catraonline.ca/storage/files/shares/publications-en/CATRA_AR_2020_ENG_FINAL.pdf.
5. (2022, November 01). 2020 U.S. Scrap Tire Management Summary. Available online: https://www.ustires.org/sites/default/files/2019%20USTMA%20Scrap%20Tire%20Management%20Summary%20Report.pdf.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献