Experimental Investigation on the Axial Loading Performance of Grooving-Damaged Square Hollow Concrete-Filled Steel Tube Columns

Author:

Liu Jing1,Pan Zimao1,Pan Zhicheng23,He Shaohua4ORCID,Yu Wenzhuo1

Affiliation:

1. Hunan Engineering Research Center of Development and Application of Ceramsite Concrete Technology, Hunan City University, Yiyang 413000, China

2. Sinohydro Engineering Bureau 8 Co., Ltd., Changsha 410004, China

3. Power China Chizhou Changzhi Prefabricated Construction Co., Ltd., Chizhou 247100, China

4. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510000, China

Abstract

Under the influence of material defects, structural grooving, environmental corrosion, and other factors in engineering, concrete-filled steel tubes incur local defects on their external surfaces that affect their structural integrity and service life. This work conducts axial compression tests on 10 grooving-damaged square hollow concrete-filled steel tube (SHCFST) columns to investigate the effect of grooving damage on their axial compressive ultimate bearing capacity and the effect of steel tubes on concrete confinement. It explores the effects of three parameters, namely, the length of grooves, presence of slots in internal and external steel tubes, and orientation of grooves, on structural static performance. This study analyzes the loading, failure mechanisms, and axial compressive ultimate bearing capacity of grooving-damaged SHCFST columns. Results indicate that grooving weakens the steel tube’s confinement effect on the concrete core, reducing the axial compressive ultimate bearing capacity of specimens. On the basis of this experimental research, a method for calculating the axial compressive ultimate bearing capacity and axial compressive stiffness of grooving-damaged SHCFST columns is proposed. The calculation results closely align with experimental outcomes, providing valuable insights for related scientific research and engineering applications.

Funder

National Natural Science Foundation of China

Hunan Education Department Foundation Funded Project

Natural Science Foundation of Hunan Province

Key research and development project of Anhui Province

Anhui Province Housing and Urban Rural Construction Science and Technology Plan Project

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3