Rational Use of Idealized Shear-Building Models to Approximate Actual Buildings

Author:

Zuo ZhanxuanORCID,He Yiting,Li ShuangORCID

Abstract

The paper aims to investigate the accuracies of idealization methods of the well-known shear-building models. Five idealization methods are adopted to idealize the structural story capacity curve within the range from zero to the deformation corresponding to the peak shear point. After the peak shear point, a skew branch followed by a constant branch are used to approximate the capacity curve. The five idealization methods are verified by using four reinforcement concrete (RC) frames with 3, 8, 12, and 18 stories. Results reveal that all the five idealization methods may cause remarkable errors in prediction of the period, displacements and accelerations of the actual buildings. The errors of the structural period by the five idealization methods are almost above 10–40%. The errors of the structural displacements and accelerations by the five idealization methods are almost above 30–90%. For all the five idealization methods, the prediction accuracy on displacement and acceleration will be dramatically increased if the comparison is only focused on the maximum value within all story rather than the maximum values of each story. The initial stiffness method provides the best predictions on periods of the actual buildings. The farthest point method provides better prediction than the other four idealization methods.

Funder

Institute of Engineering Mechanics, China Earthquake Administration

Natural Science Foundation of Heilongjiang

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3