Fiber Reinforced Polymer (FRP) Confined Circular Concrete Columns: An Experimental Overview

Author:

Valasaki Maria K.1ORCID,Papakonstantinou Christos G.1ORCID

Affiliation:

1. Laboratory of Concrete Technology & Reinforced Concrete Structures, Department of Civil Engineering, University of Thessaly, GR-38334 Volos, Greece

Abstract

Fiber-reinforced polymers (FRPs) are widely used as composite materials in civil engineering applications to rehabilitate or strengthen reinforced-concrete structural elements. The purpose of this study was to compile an extensive and up-to-date experimental database based on the compressive tests conducted on circular confined concrete structural elements using FRP composite materials. Strict criteria were implemented during the collection of the experimental data to minimize uncertainty and maximize uniformity. In order to compare the results, the collected data were divided into two categories based on the type of confinement, namely FRP wrapped and FRP tube encased. A detailed database of 1470 experimental test results on FRP-confined concrete cylindrical specimens demonstrated the specimens’ geometry, the jacketing materials’ physical and mechanical properties, and the effect of the confinement on the axial compressive strength and strain. The analysis of the database led to important observations on the parameters that influence FRP-confined concrete’s behavior. The unconfined concrete strength seems to be inversely related to the confinement efficiency. The confinement efficiency is quite limited in high-strength concrete specimens. Carbon fibers tend to provide greater confinement effectiveness, while the FRP axial rigidity was found to contribute significantly to the effect of confinement. Glass and aramid fibers seem to perform equally well, regardless of the confinement method. An interesting finding is that while FRP-wrapped specimens perform similarly to tube-encased specimens in terms of increases in compressive strength, the latter are associated with larger increases in ultimate axial strains.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3