Modeling and Assessment of Temperature and Thermal Stress Field of Asphalt Pavement on the Tibetan Plateau

Author:

Li Bin1,Xie Yadong1,Bi Yanqiu1,Zou Xiaoling1,Tian Fafu1,Cong Zhimin2

Affiliation:

1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China

Abstract

The Qinghai–Tibet Plateau (QTP) is the highest altitude plateau in the world, characterized by strong solar radiation and large diurnal temperature differences and so on, which brings a great negative impact on the temperature and thermal stress field of asphalt pavement. The purpose of this study is to analyze the temperature field and thermal stress status of asphalt pavement in the QTP to provide a reference for pavement design and maintenance in high-altitude areas. The finite element method was applied to establish the temperature field model to study the distribution and variation of pavement temperature. On this basis, the influence of cooling amplitude on pavement thermal stress was studied during cold waves. In addition to this, the key internal factors affecting the thermal stress of pavement, such as surface thickness, surface temperature shrinkage coefficient, surface modulus, and base modulus, were analyzed by an orthogonal test. It was found that temperature and solar radiation have a significant effect on the pavement temperature field. When the cold wave came, the cooling rate had a considerable impact on the thermal stress of the pavement, that is, every 5 °C increase in cooling rate would increase the thermal stress by more than 50%. The temperature shrinkage coefficient and surface modulus of the surface layer material had the greatest influence on the pavement thermal stress. The thermal stress could be reduced by more than 0.4 Mpa for every 5 × 10−6/°C reduction in the surface temperature shrinkage coefficient or every 1000 Mpa reduction in the surface modulus. This study can provide a reference for improving the temperature field and thermal stress field of asphalt pavement in the plateau area.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Chongqing Municipal Education Commission Foundation

Chongqing Transport Bureau

Chongqing Jiaotong University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3