Shaking Table Tests and Validation of Multi-Modal Sensing and Damage Detection Using Smartphones

Author:

Han Ruicong,Zhao Xuefeng

Abstract

Structural health monitoring (SHM) systems using modal- and vibration-based methods, particularly wireless systems, have been widely investigated in relation to the monitoring of damage states in civil infrastructures such as bridges and buildings. Unlike many current efforts in developing wireless sensors, one can instead leverage the suite of sensors, network transmission, data storage, and embedded processing capabilities built into modern smartphones for SHM. The objective of this work was to assess and validate the use of smartphones for the monitoring of artificial damage states in a three-story steel frame model subjected to shaking table-induced earthquake excitations. The steel frame was a 2D structure with six rotary viscous dampers installed at the beam–column joints, which were used for simulating different damage states at their respective locations; the columns were also replaced with ones of reduced cross-sectional areas to further emulate damage. In addition to instrumenting the frame with conventional tethered sensors, Apple iPhones (pre-loaded with customized smartphone apps to record acceleration and inter-story displacement) were also installed. Shaking table tests were then conducted on the undamaged and damaged frames, while conventional sensors’ and smartphones’ responses were collected and compared. Wavelet packet decomposition was employed to analyze the acceleration data to detect damage in two different cases. Structural displacements were also computed from acceleration measurements and compared with displacement measurements to further validate the quality of smartphone sensor measurements.

Funder

High level talents scientific research startup project of North China University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3